3.345 \(\int \frac{\cos (c+d x)}{\sqrt{a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=122 \[ -\frac{3 i \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{4 a d}+\frac{i \cos (c+d x)}{2 d \sqrt{a+i a \tan (c+d x)}}+\frac{3 i \tanh ^{-1}\left (\frac{\sqrt{a} \sec (c+d x)}{\sqrt{2} \sqrt{a+i a \tan (c+d x)}}\right )}{4 \sqrt{2} \sqrt{a} d} \]

[Out]

(((3*I)/4)*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*Sqrt[a]*d) + ((I/2)*
Cos[c + d*x])/(d*Sqrt[a + I*a*Tan[c + d*x]]) - (((3*I)/4)*Cos[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.133504, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {3502, 3490, 3489, 206} \[ -\frac{3 i \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{4 a d}+\frac{i \cos (c+d x)}{2 d \sqrt{a+i a \tan (c+d x)}}+\frac{3 i \tanh ^{-1}\left (\frac{\sqrt{a} \sec (c+d x)}{\sqrt{2} \sqrt{a+i a \tan (c+d x)}}\right )}{4 \sqrt{2} \sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(((3*I)/4)*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*Sqrt[a]*d) + ((I/2)*
Cos[c + d*x])/(d*Sqrt[a + I*a*Tan[c + d*x]]) - (((3*I)/4)*Cos[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/(a*d)

Rule 3502

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(b*f*(m + 2*n)), x] + Dist[Simplify[m + n]/(a*(m + 2*n)), Int[(d*Sec[
e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2*n]

Rule 3490

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(a*f*m), x] + Dist[a/(2*d^2), Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan
[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && EqQ[m/2 + n, 0] && GtQ[n, 0]

Rule 3489

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*a)/(b*f), Subst[
Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^
2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos (c+d x)}{\sqrt{a+i a \tan (c+d x)}} \, dx &=\frac{i \cos (c+d x)}{2 d \sqrt{a+i a \tan (c+d x)}}+\frac{3 \int \cos (c+d x) \sqrt{a+i a \tan (c+d x)} \, dx}{4 a}\\ &=\frac{i \cos (c+d x)}{2 d \sqrt{a+i a \tan (c+d x)}}-\frac{3 i \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{4 a d}+\frac{3}{8} \int \frac{\sec (c+d x)}{\sqrt{a+i a \tan (c+d x)}} \, dx\\ &=\frac{i \cos (c+d x)}{2 d \sqrt{a+i a \tan (c+d x)}}-\frac{3 i \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{4 a d}+\frac{(3 i) \operatorname{Subst}\left (\int \frac{1}{2-a x^2} \, dx,x,\frac{\sec (c+d x)}{\sqrt{a+i a \tan (c+d x)}}\right )}{4 d}\\ &=\frac{3 i \tanh ^{-1}\left (\frac{\sqrt{a} \sec (c+d x)}{\sqrt{2} \sqrt{a+i a \tan (c+d x)}}\right )}{4 \sqrt{2} \sqrt{a} d}+\frac{i \cos (c+d x)}{2 d \sqrt{a+i a \tan (c+d x)}}-\frac{3 i \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{4 a d}\\ \end{align*}

Mathematica [A]  time = 0.455174, size = 96, normalized size = 0.79 \[ \frac{\sec (c+d x) \left (3 i \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )-i (3 i \sin (2 (c+d x))+\cos (2 (c+d x))+1)\right )}{8 d \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(Sec[c + d*x]*((3*I)*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]] - I*(1 + Cos[2*(c +
d*x)] + (3*I)*Sin[2*(c + d*x)])))/(8*d*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.325, size = 319, normalized size = 2.6 \begin{align*}{\frac{1}{16\,ad}\sqrt{{\frac{a \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) \right ) }{\cos \left ( dx+c \right ) }}} \left ( 3\,i\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{\sqrt{2} \left ( i\cos \left ( dx+c \right ) -i+\sin \left ( dx+c \right ) \right ) }{2\,\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}}} \right ) \sqrt{2}\cos \left ( dx+c \right ) +3\,i\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{\sqrt{2} \left ( i\cos \left ( dx+c \right ) -i+\sin \left ( dx+c \right ) \right ) }{2\,\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}}} \right ) \sqrt{2}+8\,i \left ( \cos \left ( dx+c \right ) \right ) ^{3}+3\,\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ( 1/2\,{\frac{\sqrt{2} \left ( i\cos \left ( dx+c \right ) -i+\sin \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}}} \right ) \sqrt{2}\sin \left ( dx+c \right ) +8\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ) -12\,i\cos \left ( dx+c \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

1/16/d/a*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(3*I*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2
^(1/2)*(I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)*cos(d*x+c)+3*I*(-2
*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(co
s(d*x+c)+1))^(1/2))*2^(1/2)+8*I*cos(d*x+c)^3+3*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(
d*x+c)-I+sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)*sin(d*x+c)+8*cos(d*x+c)^2*sin(d*
x+c)-12*I*cos(d*x+c))

________________________________________________________________________________________

Maxima [B]  time = 2.17792, size = 1130, normalized size = 9.26 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/32*((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((4*I*sqrt(2)*cos(2*d*x + 2*c)
+ 4*sqrt(2)*sin(2*d*x + 2*c) - 8*I*sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 4*(sqrt
(2)*cos(2*d*x + 2*c) - I*sqrt(2)*sin(2*d*x + 2*c) - 2*sqrt(2))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c) + 1)))*sqrt(a) - (6*sqrt(2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/
4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(
2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) - 6*sqrt(2)*arctan2((cos
(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1) - 3*I*sqrt(2)*log(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*c
os(2*d*x + 2*c) + 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sqrt(cos(2*d*x + 2*c)^2 + si
n(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + 2*(cos
(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c) + 1)) + 1) + 3*I*sqrt(2)*log(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*
cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*
cos(2*d*x + 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 - 2*(cos(2*d*x + 2*c)^2 + sin
(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1))
*sqrt(a))/(a*d)

________________________________________________________________________________________

Fricas [B]  time = 2.14608, size = 778, normalized size = 6.38 \begin{align*} \frac{{\left (3 i \, \sqrt{\frac{1}{2}} a d \sqrt{\frac{1}{a d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left ({\left (2 \, \sqrt{\frac{1}{2}} a d \sqrt{\frac{1}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 3 i \, \sqrt{\frac{1}{2}} a d \sqrt{\frac{1}{a d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-{\left (2 \, \sqrt{\frac{1}{2}} a d \sqrt{\frac{1}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} - \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (-2 i \, e^{\left (4 i \, d x + 4 i \, c\right )} - i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{8 \, a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/8*(3*I*sqrt(1/2)*a*d*sqrt(1/(a*d^2))*e^(3*I*d*x + 3*I*c)*log((2*sqrt(1/2)*a*d*sqrt(1/(a*d^2))*e^(I*d*x + I*c
) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 3
*I*sqrt(1/2)*a*d*sqrt(1/(a*d^2))*e^(3*I*d*x + 3*I*c)*log(-(2*sqrt(1/2)*a*d*sqrt(1/(a*d^2))*e^(I*d*x + I*c) - s
qrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + sqrt(2
)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-2*I*e^(4*I*d*x + 4*I*c) - I*e^(2*I*d*x + 2*I*c) + I)*e^(I*d*x + I*c))*e^
(-3*I*d*x - 3*I*c)/(a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos{\left (c + d x \right )}}{\sqrt{a \left (i \tan{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(cos(c + d*x)/sqrt(a*(I*tan(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )}{\sqrt{i \, a \tan \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)/sqrt(I*a*tan(d*x + c) + a), x)